Denise LUGER

Thesis Supervisor: Steffen HERING

Department of Pharmacology and Toxicology, University of Vienna.

MolTag 1st Funding Period.

Defensio: November 2015

Title:

Molecular determinants of GABAA receptor modulation by valerenic acid.

Abstract in Englisch

Valerenic acid (VA) is a positive allosteric modulator of $\beta 2/3$ -containing GABAA receptors and displays anxiolytic and anticonvulsive properties. VA's $\beta 2/3$ -subunit-selectivity is determined by an asparagine residue in $\beta 2/3265$. However, its binding site on GABAA receptors is still unknown.

In the scope of this thesis, I aimed to identify molecular determinants for potent, efficacious, and β -subunitdependent modulation by VA: first, I studied the contribution of selected amino acids in the α 1- and β 3subunit to VA efficacy and potency. Wild-type α 1 β 3 γ 2S and mutant GABAA receptors were expressed in Xenopus laevis oocytes and IGABA enhancement by VA was analyzed by means of the two-microelectrode voltage clamp technique. In addition, chemical features essential for potent, efficacious, and β -subunitdependent modulation were investigated making use of three focused libraries of VA derivatives. Finally, the effect of VA and a previously reported derivative (VA amide; VA-A) was studied on GABAA receptors expressed in human embryonic kidney (HEK) cells and hippocampal neurons. Four transmembrane residues in the β 3-subunit (N265, R269, M286, F289) were identified to determine the interaction of VA with GABAA receptors.

These results indicate a VA binding site located at the α -/ β +-interface, potentially overlapping with sites for general anaesthetics. Structure-activity relationship (SAR) studies further revealed that modifications of VA's carboxyl function and its two methyl groups in position 3 and 7 profoundly alter efficacy, potency, and β -selectivity. In particular, VA-A modulated synaptic- and extrasynaptic-type GABAA receptors, expressed in both oocytes (α 1 β 2/3 γ 2S) and HEK cells (α 1 β 2 γ 2S, α 5 β 3 γ 2S, α 4 β 3 δ , α 6 β 3 δ), more potently and/or efficaciously than VA. Both compounds also increased tonic inhibition in hippocampal neurons, probably due to their high activity on α 5-containing GABAA receptors.

Taken together, my work suggests a binding pocket for VA at the α -/ β +-interface. Increased tonic inhibition by VA and derivatives is reported for the first time. Together with the data obtained from SAR studies, these results may help to develop novel, β -subunit-selective ligands. Future studies are required to investigate a potential contribution of enhanced tonic inhibition by VA and VA derivatives to their in vivo effects.